Overcoming the blood-brain barrier with high-dose enzyme replacement therapy in murine mucopolysaccharidosis VII.
نویسندگان
چکیده
Enzyme replacement therapy (ERT) effectively reverses storage in several lysosomal storage diseases. However, improvement in brain is limited by the blood-brain barrier except in the newborn period. In this study, we asked whether this barrier could be overcome by higher doses of enzyme than are used in conventional trials. We measured the distribution of recombinant human beta-glucuronidase (hGUS) and reduction in storage by weekly doses of 0.3-40 mg/kg administered i.v. over 1-13 weeks to mucopolysaccharidosis type VII mice immunotolerant to recombinant hGUS. Mice given up to 5 mg/kg enzyme weekly over 3 weeks had moderate reduction in meningeal storage but no change in neo-cortical neurons. Mice given 20-40 mg/kg three times over 1 week showed no reduction in storage in any area of the CNS except the meninges. In contrast, mice receiving 4 mg/kg per week for 13 weeks showed clearance not only in meninges but also in parietal neocortical and hippocampal neurons and glia. Mice given 20 mg/kg once weekly for 4 weeks also had decreased neuronal, glial, and meningeal storage and averaged 2.5% of wild-type hGUS activity in brain. These results indicate that therapeutic enzyme can be delivered across the blood-brain barrier in the adult mucopolysaccharidosis type VII mouse if administered at higher doses than are used in conventional ERT trials and if the larger dose of enzyme is administered over a sufficient period. These results may have important implications for ERT for lysosomal storage diseases with CNS involvement.
منابع مشابه
Chemically modified beta-glucuronidase crosses blood-brain barrier and clears neuronal storage in murine mucopolysaccharidosis VII.
Enzyme replacement therapy has been used successfully in many lysosomal storage diseases. However, correction of brain storage has been limited by the inability of infused enzyme to cross the blood-brain barrier. The newborn mouse is an exception because recombinant enzyme is delivered to neonatal brain after mannose 6-phosphate receptor-mediated transcytosis. Access to this route is very limit...
متن کاملMurine mucopolysaccharidosis type VII: long term therapeutic effects of enzyme replacement and enzyme replacement followed by bone marrow transplantation.
We demonstrated previously that short term administration of recombinant beta-glucuronidase to newborn mice with mucopolysaccharidosis type VII reduced lysosomal storage in many tissues. Lysosomal storage accumulated gradually after cessation of enzyme replacement therapy. Mice alive at 1 yr of age had decreased bone deformities and less lysosomal storage in cortical neurons. Here we compare th...
متن کاملEffect of systemic high dose enzyme replacement therapy on the improvement of CNS defects in a mouse model of mucopolysaccharidosis type II
BACKGROUND Mucopolysaccharidosis type II (MPS II, Hunter syndrome), is caused by a deficiency of iduronate-2-sulfatase (IDS). Despite the therapeutic effect of intravenous enzyme replacement therapy (ERT), the central nervous system (CNS) defects persist because the enzyme cannot cross the blood-brain barrier (BBB). There have been several trials of direct infusion to the cerebrospinal space sh...
متن کاملEncapsulation cell therapy for mucopolysaccharidosis type VII using genetically engineered immortalized human amniotic epithelial cells.
Mucopolysaccharidosis type VII (MPSVII) is a lysosomal storage disease resulted from a deficiency of the enzyme beta-glucuronidase (GUSB), which is necessary for degradation of glycosaminoglycans (GAGs). The deficiency of GUSB causes progressive accumulation of GAGs and subsequent lysosomal distension in multiple tissues, including the central nervous system (CNS). In murine experiments, bone m...
متن کاملGlycosylation-independent targeting enhances enzyme delivery to lysosomes and decreases storage in mucopolysaccharidosis type VII mice.
Enzyme-replacement therapy is an established means of treating lysosomal storage diseases. Infused therapeutic enzymes are targeted to lysosomes of affected cells by interactions with cell-surface receptors that recognize carbohydrate moieties, such as mannose and mannose 6-phosphate, on the enzymes. We have tested an alternative, peptide-based targeting system for delivery of enzymes to lysoso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 41 شماره
صفحات -
تاریخ انتشار 2005